一、氣凝膠概述:
氣凝膠是一種具有高比表面積、低堆積密度的多孔納米材料。由于氣凝膠具有的納米結(jié)構(gòu),因此在航天、催化、環(huán)境保護(hù)等領(lǐng)域有著廣闊的應(yīng)用前景,其制備技術(shù)已成為化學(xué)工程研究的一個(gè)新興領(lǐng)域。溶膠-凝膠法(Sol-gel)是制備氣凝膠的一種常用方法,它包括溶膠制備、凝膠制備和凝膠干燥這樣三個(gè)過程。
凝膠的干燥過程是其中的一個(gè)重要過程。傳統(tǒng)的干燥方法對氣凝膠的制備會(huì)有以下不利影響:材料的基礎(chǔ)粒子變粗,比表面積大幅下降,孔隙大量減少等。近年發(fā)展起來的超臨界流體干燥技術(shù)(Supercriticalfluiddrying,SCFD)則不會(huì)產(chǎn)生這一類的不利影響。
由于超臨界流體兼具氣體和液體的性質(zhì),無氣液界面,因此也就沒有表面張力存在,此時(shí)的凝膠毛細(xì)管孔中并不存在由表面張力產(chǎn)生的附加壓力。因此利用在超臨界流體條件下對凝膠進(jìn)行干燥,不會(huì)產(chǎn)生由附加壓力而引起的凝膠結(jié)構(gòu)的坍塌,避免了凝膠在干燥過程中的收縮,保持了凝膠網(wǎng)絡(luò)框架結(jié)構(gòu),制得具有高比表面積、粒徑分布均勻、大孔容的超細(xì)氣凝膠。
二、實(shí)現(xiàn)凝膠干燥的途徑:
常用的干燥介質(zhì)主要有兩類:一類是甲醇、乙醇等有機(jī)醇類物質(zhì);還有一類是CO2。
現(xiàn)有的SCFD技術(shù)可分為以下三類:
2-1、高溫超臨界有機(jī)溶劑干燥:
溶膠-凝膠法制備催化劑一般都是在水溶液中進(jìn)行。由于水的臨界溫度、臨界壓力都比較大(Tc=374.15℃,Pc=22.12MPa),所以水凝膠不適合直接進(jìn)行超臨界流體干燥。
高溫超臨界有機(jī)溶劑干燥法是將反應(yīng)得到的水溶膠用有機(jī)溶劑將水置換出來,得到有機(jī)溶膠或利用其它方法直接制得有機(jī)溶膠,有機(jī)溶膠再經(jīng)過老化變?yōu)橛袡C(jī)凝膠;然后將有機(jī)凝膠置于已放入適量相同溶劑的高壓干燥器中,升溫增壓使該有機(jī)溶劑達(dá)到超臨界狀態(tài),利用該有機(jī)溶劑的超臨界性質(zhì)達(dá)到驅(qū)除凝膠中溶劑的目的。
高溫超臨界有機(jī)溶劑干燥法操作簡單,干燥效果明顯,在制得水凝膠后,用無水乙醇交換得到醇溶膠,經(jīng)老化得到醇凝膠,以無水乙醇為介質(zhì),用SCFD法干燥醇凝膠。
2-2、液態(tài)CO2置換超臨界干燥:
CO2的臨界溫度接近于室溫,且CO2無毒,不易燃易爆。因此CO2必然是進(jìn)行超臨界流體干燥的一種良好干燥介質(zhì)。液態(tài)CO2置換超臨界干燥法是用CO2取代有機(jī)溶劑作為干燥介質(zhì)進(jìn)行超臨界干燥。
該方法首先將凝膠內(nèi)的液體溶劑用液態(tài)CO2置換,再升溫增壓使CO2達(dá)到超臨界狀態(tài),最后利用CO2的超臨界性質(zhì)進(jìn)行氣凝膠干燥。因?yàn)樵摳稍镞^程溫度較低,故此方法也稱低溫超臨界CO2干燥法。
以醇凝膠干燥為例,將醇凝膠放入超臨界干燥器內(nèi)通入液態(tài)CO2進(jìn)行溶劑替換,以除去醇凝膠內(nèi)的水和乙醇,再通過升溫和增壓,達(dá)到二氧化碳的超臨界條件,保持一定時(shí)間后緩慢放出二氧化碳?xì)怏w,最后得到氣凝膠固體。
2-3、超臨界CO2萃取干燥:
由于液態(tài)CO2置換溶劑的時(shí)間長、干燥周期太長,不利于工業(yè)化生產(chǎn),故現(xiàn)逐漸被超臨界CO2萃取干燥法所替代。超臨界CO2萃取干燥法是超臨界萃取技術(shù)和超臨界流體干燥技術(shù)的結(jié)合,與液態(tài)CO2置換超臨界干燥法相比,省去液態(tài)CO2置換溶劑的步驟,直接用超臨界CO2萃取出醇凝膠微孔中的醇,使凝膠在基本保持原結(jié)構(gòu)的情況下被干燥,使得整個(gè)干燥時(shí)間進(jìn)一步縮短,操作費(fèi)用大幅度降低。
三、氣凝膠干燥主要因素:
與溶膠-凝膠過程相比,超臨界流體干燥過程所涉及的體系較復(fù)雜,工藝條件較多,且超臨界流體干燥過程的許多工藝條件對最終氣凝膠的結(jié)構(gòu)和性能會(huì)產(chǎn)生較大的影響。因此,正確選擇這些工藝條件對制備高性能的氣凝膠至關(guān)重要。
工藝條件主要有:干燥介質(zhì)種類、介質(zhì)流量,干燥時(shí)間、干燥溫度、干燥壓力等。
3-1、干燥介質(zhì)的影響:
TiO2氣凝膠在制得醇凝膠后,分別采用超臨界乙醇和超臨界CO2為干燥介質(zhì)進(jìn)行TiO2醇凝膠的干燥??刂瞥R界乙醇的干燥條件為:T=270℃,P=8Mpa,恒溫時(shí)間為0.5h;超臨界CO2的干燥條件為:液體CO2置換乙醇的置換時(shí)間t=72h,T=42℃,P=9.0Mpa,干燥恒溫時(shí)間為5h。將不同干燥介質(zhì)所得的TiO2氣凝膠進(jìn)行光催化降解羅丹明B實(shí)驗(yàn)的比較;實(shí)驗(yàn)結(jié)果表明,用CO2為干燥介質(zhì)所得的TiO2氣凝膠光催化活性優(yōu)于用乙醇為干燥介質(zhì)所得的氣凝膠。
因?yàn)镃O2干燥法的干燥溫度低,過程無易燃易爆氣體存在,所制備的氣凝膠粒子又不含碳,所以以CO2為干燥介質(zhì)的SCFD技術(shù)更易于工業(yè)化開發(fā)。
3-2、介質(zhì)流量的影響:
ZrO2氣凝膠,通過設(shè)計(jì)正交實(shí)驗(yàn)考察CO2流量等因素對ZrO2氣凝膠制備效果的綜合影響。采用四因素三水平正交實(shí)驗(yàn)條件為:CO2流量為0.42L/h、0.65L/h、0.90L/h;干燥壓力為8.6MPa、9.0MPa、9.5MPa;干燥時(shí)間為5h、6h、7h;干燥溫度為40℃、50℃、60℃。
正交實(shí)驗(yàn)得出的干燥條件為:CO2流量0.65L/h,干燥壓力9.5MPa,干燥時(shí)間6h,干燥溫度50℃。這說明干燥介質(zhì)的流量與干燥效果不是呈簡單的線性關(guān)系,而是存在一值。其原因一方面是隨著CO2流率的增大,分散介質(zhì)乙醇與超臨界CO2流體之間的傳質(zhì)推動(dòng)力加大,萃取干燥速度加快;另一方面假若CO2流率過大,則從凝膠表面提取乙醇的速度會(huì)過快,凝膠孔間會(huì)形成較大的乙醇濃度梯度,從而引起乙醇在孔間擴(kuò)散速率差異的增大,影響了凝膠內(nèi)部的結(jié)構(gòu),產(chǎn)生較多的破裂,不利于高比表面積氣凝膠的形成。
3-3、干燥時(shí)間的影響:
SiO2醇凝膠置于CO2超臨界萃取干燥的高壓萃取釜內(nèi),通入超臨界條件下的CO2進(jìn)行萃取干燥??刂瞥R界條件為:壓力P=10MPa,溫度T=40℃,流速為10kg/min,分別萃取干燥5h、10h、20h,發(fā)現(xiàn)不同干燥時(shí)間得到的SiO2氣凝膠其比表面積是不同的,分別為574m2/g、583m2/g、603m2/g。
這說明萃取時(shí)間越長,得到的氣凝膠比表面積也越大。但從綜合經(jīng)濟(jì)效益考慮,干燥時(shí)間應(yīng)擇優(yōu)選取。
3-4、干燥壓力的影響:
在保證達(dá)到超臨界流體條件下,隨著超臨界干燥壓力的增加氧化物氣凝膠的比表面積不斷下降。這是因?yàn)殡S著干燥壓力的增大,流體密度在增大,傳質(zhì)阻力在增加,引起了傳質(zhì)速率的減小,使氣凝膠比表面積下降。當(dāng)然,若壓力達(dá)不到超臨界的條件,溶劑的溶解能力會(huì)大大下降,并與固體顆粒間產(chǎn)生表面張力,脫除溶劑時(shí)容易發(fā)生凝膠結(jié)構(gòu)的破壞,導(dǎo)致表面積及孔體積的減小。因此的干燥壓力應(yīng)選擇在稍大于介質(zhì)臨界壓力附近。
3-5、干燥溫度的影響:
MnO2氣凝膠,采用SCFD技術(shù)對凝膠進(jìn)行干燥,干燥過程中固定干燥反應(yīng)時(shí)間為2h,超臨界干燥壓力為6.6MPa,通過改變超臨界干燥溫度,結(jié)果顯示,隨著超臨界干燥溫度的升高,氣凝膠粉體的比表面積逐漸增加,在263℃達(dá)到值;然后隨溫度的升高,比表面積又逐漸減小。
這說明在超臨界條件下,溫度有著兩方面的影響:一方面,溫度越高介質(zhì)流體的密度就越小,傳質(zhì)推動(dòng)力就大,有利于水的驅(qū)除,提高了氣凝膠的表面積:另一方面,溫度越高,在水熱的作用下顆粒容易長大,氣凝膠的表面積會(huì)減小。為此,應(yīng)根據(jù)這兩方面的消長趨勢,合理選擇一個(gè)溫度。
四、超臨界干燥裝置組成:
超臨界干燥裝置主要由:氣源系統(tǒng)、制冷系統(tǒng)、流量控制系統(tǒng)、溫度控制系統(tǒng)、壓力控制調(diào)節(jié)系統(tǒng)、干燥裝置、分離裝置電氣控制、支架箱體等組成。